
REPORT~ DOCUMENTATION PAGE _____________

Pu7 Aag 1.m Aou pe repne Including~ t imne lo Vsvivoring intrucions,. arch~ing exiting daota soure gathering
and AD -A251*615 on. Sand commords regarding this burden stimate or"an other sped ot this collodion of inlmton. ionndudang
tugI . 111 ~5 Directorate for Information Operations and Raports, 1215 Jeffeson Davis g.ghway. Suit. 1204. Adlinton. VA

zr. Pof Managerent and Budgt Washington, DC 20603.

I1 1111111 INi 11111 11li111 P! II 111111 PI! 1I1 elrT 3. REPORT TYPE AND DATES

I ia:04 April 1992
4. TITLE AND 5. FUNDING

Validation Summary Report: Siemens Nixdorf lnformationssysteme AG, Ada
(SINIX) V4. 1, Siemens Nixdorf MX300i under SINIX V5.41 (Host &Target),
92032511.11249

6.

IABG-AVF
Ottobrunn, Federal Republic of Germany E r. T F

7. PERFORMING ORGANIZATION NAME(S) ANDA' PROMN

IABG-AVF, lndustrieanlagen-Betriebsgeselschaft
Dept. SZT/ Einsteinstrasse 20 CGVR 0
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY
9. SPONSORING(MONITORING AGENCY NAME(S) AND 10. SPONSORING(MONITORING

Ada Joint Program Off ice AGENCY

United States Department of Defense
Pentagon, Rm 3E 114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILA8ILITY 12b. DISTRIBUTION

Approved for public release; distribution unlimited.

13. (Maximm 200

Siemens Nixdorf lnformationssysteme AG, Ada (SINIX) V4.1, Siemens Nixdorf MX300i under SINIX V5.41
(Host &Target), ACVC 1.-11.

14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Vat. 16.____PRICE__
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSL'IL-STD-1815A, 6 RC

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED________
NSN Standard Form 299, (Rev. 2-69)

Prescrbed by ANSI Sid.

AVF Control Number: IABG-VSR 105
04 April, 1992

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 92032511.11249
Siemens Nixdorf Informationssysteme AG

Ada (SINIX) V4.1
Siemens Nixdorf MX300i under SINIX V5.41

Host and Target

SFor

Dint £ peol

Prepared By:

IABG mbH, Abt. ITE
Einsteinstr. 20
W-8012 Ottobrunn

Germany

92-14404

92 6 01 0T 3

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 25 March, 1992.

Compiler Name and Version: Ada (SINIX) V4.1

Host Computer System: Siemens Nixdorf MX300i under SINIX Version 5.41

Target Computer System: Same as Host

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
92032511.11249 is awarded to Siemens Nixdorf AG. This certificate
expires on 1 June 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Ada Va d t*-Org an i zation

Direci r, outer & Software Engineering DivisionInstXute FDefense Analyses

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer: Siemens Nixdorf Informationssysteme AG

Certificate Awardee: Siemens Nixdorf Informationssysteme AG

Ada Validation Facility: ABG mbH

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: Ada (SINIX) V4.1

Host Computer System: Siemens Nixdorf MX300i under
SINIX Version V5.41

Target Computer System: Same as Host Computer System

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation
listed above.

DR. KAAB

Cster 2 6. Min992
Customer Signature Date

..... ...

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-1
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-2

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Proaramming Lanauage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro9O] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG893 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1-1

INTRODUCTION

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Ulass C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not opirating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and

1-2

INTRODUCTION

Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementatior. for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to

1-3

INTRODUCTION

the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 August 1991.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B830258 B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BD1BO6A ADlBO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A4lA CD2A4lE CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

2-1

IMPLEMENTATION DEPENDENCIES

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONG-FLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefineu floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C, and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; this implementation does not support
pragma INLINE.

CD1O09C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE-CODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

2-2

IMPLEMENTATION DEPENDENCIES

Test File Operation Mode File Access Method
CE2102D CREATE INFILE SEQUENTIAL_10
CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT0IO
CE2102F CREATE IN FILE DIRECT_10

CE2102J CREATE OUT FILE DIRECT-IO
CE2i02N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIALIO
CE2102Q RESET OUT-FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FIEE DIRECT-IO
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-10
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT 15
CE3102F RESET Any Mode TEXT-10
CE3102G DELETE TEXT IO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE-ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3125A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an Enappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see Section 1.3) were required for 8 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed
by the AVO. The compiler rejects the use of the range
FLOAT'FIRST. .FLOAT'LAST as the range constraint of a floating-point type

2-3

IMPLEMENTATION DEPENDENCIES

declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

CA2009C and CA2009F were graded inapplicable by Evaluation Modification
as directed by the AVO. These tests contain instantiations of a generic
unit prior to the compilation of that unit's body; as allowed by
AI-00408 and AI-00506, the compilation of the generic unit bodies makes
the compilation unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal
if the generic bodies contain uses of the types that require a
constraint. However, the generic bodies are compiled after the units
that contain the instantiations, and this implementation creates a
dependence of the instantiating units on the generic units as allowed
by AI-00408 and AI-00506 such that the compilation of the generic bodies
makes the instantiating units obsolete--no errors are detected. The
processing of these tests was modified by compiling the seperate files
in the following order (to allow re-compilation of obsolete units), and
all intended errors were then detected by the compiler:

BC3204C: CO, Cl, C2, C3M, C4, CS, C6, C3M

BC3205D: DO, DlM, D2, DlM

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation system, see:

CGK Computer Gesellschaft Konstanz mbH
TA 4
Dr. Kaab
Max-Stromeyer-Str. 168
W-7750 Konstanz
Tel: +49 7531 87 3910.

For sales information about this Ada implementation system, see:

Siemens Nixdorf Informationssysteme AG
SP ZES 63
Klaus Engelke
Otto-Hahn-Ring 6
W-8000 Minchen 83
Tel: +49 89 636 82549.

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC (Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system -- if none is supported (item d). All tests passed, except

3-1

PROCESSING INFORMATION

those that are listed in sections 2.1 and 2.2 (counted in items b and f,
below).

a) Total Number of Applicable Tests 3786
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 88
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 289 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic data cartridge containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The contents
of the magnetic data cartridge were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation. The tests were compiled,
linked, and executed on the computer system, as appropriate.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for compiling during this
test were:

-fE generate error log file

-fI ignore compilation errors and continue generating code
within the same compilation file

-fQ (quiet) suppress messages "added to library" and
"Generating code for"

-fw suppress warnings

The options invoked explicitly for linking during this test were:

-s 75000 amount of stack space reserved for task stacks in the
program stack

The options -fI, -fQ, and -s are not documented in the generic compiler user
manual.

Test output, compiler and linker listings, and job logs were captured on
magnetic data cartridge and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which
is the value for $MAXIN LEN--also listed here. These values are
expressed here as Ada string aggregates, where "V" represents the maximum
input-line length.

Macro Parameter Macro Value

$MAX IN LEN 240

$BIG ID1 (l..V-l -> 'A', V -> '1')

SEIG 1D2 (l..V-l => 'A', V => '2')

$BIG ID3 (l..V/2 -> 'A) & 3' &
(1. .V-l-V/2 ->'A')

$BIG 1D4 (l..V/2 -> 'A) & 4' &
(l. .V-1-V/2 W>'A)

$BIGINTLIT (l..V-3 => 0') & 298"

$BIGREALLIT (l..V-5 -> 0') &"690.0"

SEIGSTRINGi 1 & (l..V/2 -> 'A) & -

$EIG STRING2 ' & (l..V-l-V/2 -> WA) & 1' &I"

$BLANKS (l..V-20 =

$MAX LEN INT BASED_-LITERAL
"2:" & (l..V-5 -> '0') & "11:"

$MAX LEN REALBASEDLITERAL
"16:" & (l..V-7 -> '0') &"F.E:"

$MAXSTRING LITERAL ''& (l..V-2 -> 'A) &

A- 1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 32

$ALIGNMENT 4

$COUNT-LAST 2147483646

$DEFAULT-HEMSIZE 1024

$DEFAULT STORUNIT a

$DEFAULT-SYSNAME 180486

$DELTA-DOC 201.0#E-31

$ENTRYADDRESS 1601i

$ENTRY ADDRESS1 16111f

$ENTRY ADDRESS2 16#2#

$FIELDLAST 2_147_483_647

$FILETERMINATOR #

$FIXED-NAME NO-SUCH-FIXED TYPE

$ FLOATNAME NO SUCHFLOATNAME

$FORM-STRING "

$FORM-STRING2 "CANNOTRESTRICTFILE CAPACITY"

$GREATERTHAN DURATION90 0.

$GREATER-THANDURATION BASE LAST

$GREATERTHAN FLOATBASELAST
1.!E+308

$GREATER-THAN FLOATSAFELARGE
l.OE+30S

$GREATER-THANSHORTFLOATSAFELARGE
1.0E+308-

$HIGHPRIORITY 20

$ ILLEGALEXTERNAL FILE NAME1
7NOD IRECTORY /FILENAME1

$ ILLEGALEXTERNAL FILE NAME2
7NOo IRECTORY /FILENAME2

$ INAPPROPRIATELINE-LENGTH
-1

$ INAPPROPRIATE PAGE LENGTH
-1

$INCLUDE PRAGMhl PRAGMA INCLUDE (-A28006Dl.TST-)

A-2

MACRO PARAMETERS

$INCLUDE PRAGMA2 PRAGMA INCLUDE (-B28006Fl.TST-)

$INTEGER-FIRST -2147483648

$INTEGER-LAST 2147483647

$INTEGER LASTPLUS_1 2147483648

$ INTERFACELANGUAGE C

$LESSTHANDURATION -90 000.0

$LESSTHANDURATION BASE FIRST
-0~000_000.0o

SLINK TERMINATOR 1

$LOWPRIORITY 1

$MACHINE CODE STATEMENT

NULL;

$MACHINECODE TYPE INSTRUCTION

$MANTISSA-DOC 31

$MAXDIGITS 15

$MAXINT 2147483647

$MAXINTPLUS 1 2147483648

$MIN INT -2147483648

$NAME BYTE-INTEGER

SNAME LIST 180486.

$NEGBASEDINT 16#FFFFFFFE#

$NEWMEMSIZE 1024

$NEW-STOR UNIT 8

$NEW-SYS NAME 180486

$PAGE-TERMINATOR ASCII.LF & ASCLL.FF

$RECORD-DEFINITION NEW INTEGER

$RECORD-NAME INSTRUCTION

$TASK-SIZE 32

$TASK STORAGESIZE 2048

$TICK 1.0

$VARIABLE-ADDRESS FCNDECL.VAR-ADDRESS

$VARIABLE-ADDRESS1 FCNDECL .VAR ADDRESS 1

$VARIABLE ADDRESS2 FCNDECL.VAR ADDRESS2

A-3

APPENDIX B

COMPILATION AND LINKER SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described
in this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

B-1

16.1 ada

16.1.1 Invocation

16.1.2 Description

The ada command invokes theMeridian Ada compiler.

A program library must be created using mklib or new.i, in advance of any compilation. The compiler
aborts if it is unable to find a program library (either the default, ada. lib, in the current working directory
or the library name specified with the -L option).

Note that the source file has the extension , ada. Just about any non-empty file extension is permited. The
ones not allowed include those used by the Meridian Ada compiling system for other purposes such as . o
for object module files. If an illegal extension is given, the error message "missing or improper
file name" is displayed. Some other commonly used source file extensions are:

.ads for package specification source files

Sadb for package body source files

* sub for subunit (separate) source files

16.1.3 Options

-fD Generate debugging outpuL The -'D option causes the compiler to generate the appropriate code
and data for operation with the Meridian Ada Debugger. For more information on using this option
and using the Debugger, see Chapter 9.

-f, Generate error log file. The -fI option causes the compiler t generate a log file containing all the
errormessages and warning messages produced during compilation. The error log file has the same
name as the source file, with the extension . ar. For example, the error log file for simzple. ada is
simpze. ezz. The error log file is placed in the cunren working directory. In the absence of the
-LI option, the error log information is sent to the standard output stream.

-fL Generate exception location information. The -fL option causes location information (source file
names and line numbers) to be maintained for internal checks. This information is useful for debug-
ging in the event that an "Exception never handled" message appears when an exception propagates
out of the main program (see section 3.3). This option causes the code to be somewhat larger. If -fL
is not used, exceptions that propagate out of the main program will behave in the same way, but no
location information will be printed with the "Exception never handled" message.

-fN Suppress numeric checking. The -WN option suppresses two kinds of numeric checks for the entire
compilation:

1. division check

2. overflow check
These checks ae described in section 11.7 of the LRM. Using -9H reduces the size of the code. Note
that there is a related ada option. -fs to suppress all checks for a compilation. See also section 3.3.

The -fu option must be used in place of pragma suppress for the two numeric checks, because

presently pragma suppress is not supported for division-check and overflow check. Pragma

115 Meridian Ada Compiler User's Guide

ada

upp:ess works for other checks, as descrbed insection2.4.2. In the absence of the-rN option.
the numeric checks are always performed.

-is Suppress all checks. The -fs option suppresses all automatic checking. including numeric check-
ing. This option is equivalent to using pragma suppress on all checks. This option reduces the
size of the code, and is good forproducing "production quality- code or for benchrnarking the com-
piler. Note that there is a related ada option. -fN to suppress only certain kinds of numeric checks.
See also sections 2.4.2 and 3.3.

-iEv Compile verbosely. The compiler prints the name of each subprogram, package. or generic as it is
compiled.

-fw Suppress warning messages. With this option, the compiler does not print warning messages about
ignored pragmas, exceptions that are certain to be raised at run-time. or other potential problems that
the compiler is otherwise forbidden to deem as errors by the LRM.

-q The - option instructs the compiler to run an additional optimization pass. The optimizer removes
common sub-expressions, dead code and unnecessary jumps. It also does loop optimizations. This
option is different from the -q option to bamp. The -q option to ada optimizes the specified unit
when it is compiled: no inter-unit optimization is done. The -9 option to bamp analyzes and opti-
mizes the entire program at link time. Note: Even if -q is specified for the ada command, the -K
option to ad& must still be specified for the -q option to bamp to be effective.

-K Keepinternal form file. This option is used in conjunction with the Optimizer (see Chapter 7 formore
information). Without this option. the compiler deletes internal form files following code genera-
tion.

-lmodfers
Generate listing file. The -1 option causes the compiler to create a listing. Optional modifiers can be
given to affect the listing format. You can use none or any combination of the following modifiers:

a continuous listing format
p obey pragma page directives
a use standard output
t relevant text output only

The formats of and options for listings are discussed in section 16.1.7. The default listing file gener-
ated has the same name as the source file, with the extension . lat. For example. the default listing
file produced for simple. ada has the name simple. lst. The listing file is placed in the current
working directory. Note: -1 also causes an error log file to be produced, as with the -fZ option.

-L ibrary-name
Default ada. lib

Use alternate library. The -L option specifies an alternative name for the program library.
Note: Options beginning with -f can be combined, as in "-fsv." This is equivalent to specifying the options
separately, e.g. "-is -iv ." Options beginning with -1 can be similarly combined or separated, as in
"-la" or "-lc -la" (see section 16.1.7).

16.1.4 Compiler Output Files

Files produced by compilations, other than listings and error logs, are:

" atz files interface description files

" mt files Meridian Internal Form Files

" qnn files generic description files- nn is a two-digit number

Meridian Ada Compiler User's Guide 116

I
16.4 bamp

16.4.1 Invocation

16.4.2 Description

The baup (Build Ada Main Program) command creates an executable program given the name of the main
subprogram. The main-procedure-name given to b&W must be a parameterless procedure that has already
been compiled.

Note: Be careful not to confuse the name of the source file containing the main subprogram (e.g. sim-
ple. ada) with the actual name of the main subprogram (e.g. simple).

If a main-procedure-name is not specified on the banp command line, bamp links using the last-compiled
subprogram that fits the profile for a main subprogram. To determine which subprogram will be used when
no main subprogram is given to bamp, use the is..b -t option. When in doubt, it may be best to specify
the main subprogram explicitly.

Note that when no main subprogram is specified, bamp selects the most recently compiled subprogram, not

the most recently linked subprogram. If several different main subprograms are linked between compiles,
still the most recently compiled subprogram is selected if no subprogram is explicitly specified.

The baW program functions as a high-level linker. It works by creating a top-level main program that con-
tains all necessary context clauses and calls to package elaboration procedures. The main program is created
as an intemal form file on which the code generator is run. Following this code generation pass, all the re-
quired object files are linked.

An optional optimization pass can be invoked via the ba=V command. The details of optimization are dis-
cussed in Chapter 7. The bamp options relevant to optimization, -q and -4, are discussed below.

Programs compiled in Debug mode (with the ada -fD option) are automatically linke widhieMesidian
Ada source level debugger.

16.4.3 Options

-A Aggressively inline. This option instructs the optimizer to aggressively inline subprograms when

used in addition to the -G option. Typically. this means that subprograms that are only called once are

inlined. If only the -G option is used. only subprograms for which pragma 4nine has been speci-
fied are inlined.

-c compiler-program-name
Default: As stored in program library.

Use alternate compiler. The -c option specifies the complete (non relative) directory path to the

Meridian Ada compiler. This option overrides the compiler program name stored in the program
library. The -. option is intended for use in cross-compiler configurations, although under such

circumstances, an appropriate library configuration is normally used instead.

-f Suppress main program generation step. The -f option suppresses the creation and additional

code generation steps for the temporary main program file. The -f option can be used when a simple

change has been made to the body of a compilation unit. If unit elaboration order is changed. or if the

specification of a unit is changed. or if new units are added, then this option should not be used. The

133 Meridian Ada Compiler User's Guide

bamnp

-f option saves a few seconds, but places an additional bookkeeping burden on you. The option
should be avoided undermost circumstances. Note that invoking bamp with the -n option followed
by another invocation ofbamp with the -f option has the same effect as an invocation ofbamp with
neither option (-n and -f neutralize each other).

-9 Perform global optimization only. The -9 option causes baup to invoke the global optimizer on
your program. Compilation units to be optimized globally must have been compiled with the ada
-K option.

-G Perform global and local optimization. The -G option causes baep to perform both global and local
optimization on your program. This includes performing pragma inlIne. As with the -9 option,
compilation units to be optimized must have been compiled with the ada -K option.

-I Link the program with a version of the tasking run--time which supports pre-emptive task scheduling.
This option produces code which handles interrupts more quickly, but has a slight negative impact on
performance in general.

-L library-name

Default: ada. lib

Use alternate library. The -L option specifies the name of the program library to be consulted by the
bamp program. This option overrides the default library name.

-n No link. The -n option suppresses actual object file linkage, but creates and performs code genera-
tion on the main program file. Note that invoking bamp with the -n option followed by another
invocation of bamp with the -f option has the same effect as an invocation of bamp with neither
option. That is, -n and -f neutralize each other.

-N No operations. The -N option causes the banp command to do a "dry run": it prints out the actions it
takes to generate the executable program, but does not actually perform those actions. The same kind
of information is printed by the -P option.

-o output-le-name
Default file

tUse alternate executable fie output name. The -o option specifies the name of the executable pro-
gram file written by the bamp command. This option overrides the default output file name.

-P Print operations. The -P option causes the banp command to print out the actions it takes to gener-
ate the executable program as the actions am performed.

-v Link verbosely. The -v option causes the baw command to print out information about what ac-
tions it takes in building the main program such as:

" The name of the program library consulted.

" The library search order (listed as "saves" of the library units used by the program).

" The name of the main program file created (as opposed to the main procedure name).

" The elaboration order.

" The total program stack size.

" The name of the executable load module created.

" The verbose code generation for the main program file.

-W Supprs warninp. This option allows you to suppress warnings from the optimizer.

Meridian Ada Compiler User's Guide 134

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation, as
described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD can be found on page 155 of the
compiler documentation.

C-1

Appendix F Implementation-Dependent Characteristics

This appendix lists implementation-dependent characteristics of Meridian Ada. Note that there are no pre-
ceding appendices. This appendix is called Appendix F in order to comply with the Reference Manual for
the Ada Programming Language* (LRM) ANSLMIL-STD- 18 15A which states that this appendix be named
Appendix .

Implemented Chapter 13 features include length clauses, enumeration representation clauses, record repre-
semauon clauses, address clauses, interrupts, package system machine code insertions, pragma inter-
L ace, and unchecked programming.

F.1 Pragmas

The implemented pre-defined pragmas are:

elaborate See the LRM section 10.5.
interface See section F1.1.
list See the LRM Appendix B.
pack See section F. 1.2.
page See the LRM Appendix B.
priority See the LRM Appendix B.
suppress See section . 1.3.
inline See the LRM section 6.3.2. This pragma is not actually effective unless you compile/link

your program using the global optimizer.

The remaining pre-defined pragmas are accepted, but presendy ignored:

cont:olled optimize system name
shared storagewunL
umemoysize

Named parameter notation for pragmas is not supported.

When illegal parameter forms are encountered at compile time, the compiler issues a warning message rather
than an error, as required by the Ada language definition. Refer to the LR.M Appendix B for additional infor-
mation about the pre-defined pragmas.

F.1.1 Pragma Interface

The form of pragma interf ace inMeridian Ada is:

pragma inte ace(language, subprogram [, "link-name"])I

where:

language This is the interface language, one of the names assembly. builtin, c. or internal. The
names builtin and internal anm reserved for use by Meridian compiler maintainers in run-
time support packages.

subprogram This is the name of a subprogram to which the pragma Inte:ace applies.

*ALI future references to the Reference Manual for the Ada Programming Language appear as the LRM.

153 Meridian Ada Compiler User's Guide

Appendix F

link-name This is an optional string literal specifying the name of the non-Ada subprogram correspond-
ing to the Ada subprogram named in the second parameter. If link-name is omitted, then
link-nmne defaults to the value of subprogram translated to lowercase. Depending on the
language specified, some automatic modifications may be made to the link-name to produce
the actual object code symbol name that is generated whenever references are made to the
corresponding Ada subprogram.

It is appropriate to use the optional link-name parameter to pragma interface only when
the interface subprogram has a name that does not correspond at all to its Ada identifier or
when the interface subprogram name cannot be given using rules for constructing Ada identi-
tiers (e.g. if the name contains a '$' character).

The characteristics of object code symbols generated for each interface language are:

assembly The object code symbol is the same as link-name.

builtin The object code symbol is the same as link-name, but prefixed with two underscore charac-
ters (" _I"). This language interface is reserved for special interfaces defined by Meridian
Software Systems, Inc. The builtin interface is presently used to declare certain low-level
nm-time operations whose names must not conflict with programmer-defined or language
system defined names.

c The object code symbol is the same as link-name, but with one underscore character (_)
prepended. This is the convention used by the C compiler.

internal No object code symbol is generated for an internal language interface: this language inter-
face is reserved for special interfaces defined by Meridian Software Systems, Inc. The inter-
nal interface is presently used to declare certain machine-level bit operations.

No automatic data conversions are performed on parameters of any interface subprograms. It is up to the pro-
grammer to ensure that calling conventions match and that any necessary data conversions take place when
calling interface subprograms.

A pragma Int erface may appear within the same declarative pan as the subprogram to which the pragma
interface applies, following the subprogram declaration, and prior to the first use of the subprogram. A
pragzna interface that Applies to a subpjxoam declared in a package specification must occur within the
same package specification as the subprogram declaration: the pragma interface may not appear in the
package body in this case. A pragma interf ace declaration for either a private or nonprivate subprogram
declaration may appear in the private part of a package specification.

Pragma Interface for library units is not supported.

Refer to the LRM section 13.9 for additional information about pragma interface.

F.1.2 Pragma Pack -

Pragma pack is implemented for composite types (records and arrays).

Pragrna pack is permitted following the composite type declaration to which it applies, provided that the
pragma occurs within the same declarative part as the composite type declaration, before any objects or com-
ponents of the composite type are declared.

Note that the declarative part restriction means that the type declaration and accompanying pragma pack
cannot be split across a package specification and body.

The effect of pragma pack is to minimize storage consumption by discrete component types whose ranges
permit packing. Use of pragma pack does not defeat allocations of alignment storage gaps for some record
types. Pragma pak does not affect the representations of real types. pre-defined integer types, and access
types.

Meridian Ada Compiler User's Guide 154

Appendix F

F.1.3 Pragma Suppress4Pragma suppress is implemented as described in the LRM secdon 11.7, with these differences:

* Preseny. divison check and overflow-check must be suppressed via- a compiler
flag, -fN ; pragma suppress is ignored for these two numeric checks.

The optional "CH ->'" parametername notation forpragma suppress is ignord.

* The optional second parameterto pragma suppress is ignored, the pragma always

applies to the enire scope in which it appears.

F.2 Attributes

All atributes described in the LRM Appendix A are supported.

F.3 Standard Types

Additional standard types are defined in Meridian Ada:

* byt int ger
short integer

• Zlong jut eges

The standard numeric types am defined as:

type byteo_ teger is range -128 .. U27;:

type ahort integer Is range -32768 .. 32767;#.tylp intege r is rage -2147483647;type ZonLteqex is range• -2147483648 .. 2147483647;

type float Is digits 15
range -1.79769313486231Z+308 .. 1.79769313486231Z+308;

type duration is delta 0.0001 range -86400.0000 .. 86400.0000;9 F.4 Package System

The specification of package systam is:

package system is
type address is new integer;

type name is (±804.86);
system name : constant nam 1 8 0 48 6 ;

storage unit : constant : 8;
memory-size : constant : 1024;

- System-Dependent, Named Numbers9 min nt : constant : -2147483648;

maarint : constant :- 2147483647;

mar digits : constant : 15;
max mantissa : constant :m 31;
fine delta : constant : 2.0 *, (-31);
tick : constant :- 1.0;

9 155 Meridian Ada Compiler User's Guide

9J

Appendix F

- Othex Systam-Dependant Declazations
subtype p:ioity is integer range 1 .. 20;

The value of system. memory size is presently meaningless.

F.5 Restrictions on Representation Clauses

F.5.1 Length Clauses
A size specification (t ' size) is rejected if fewer bits are specified than can accommodate the type. The
minimum size of a composite type may be subject to application of pragma pack. It is permitted to specify
precise sizes for unsigned integer ranges. e.g. 8 for the range 0. .255. However, because of requirements
imposed by the Ada language definition, a full 32-bit range of unsigned values, i.e. 0.. (2**32) -1. cannot
be definea, even using a size specification.

The specification of collection size (t ' stozaqe_,size) is evaluated at run-time when the scope of the type
to which the length clause applies is entered, and is therefore subject to rejection (via storaq.*exor)
based on available storage at the time the allocation is made. A collection may include storage used for run-
time administration of the collection, and therefore should not be expected to accommodate a specific number
of objects. Furthermore, certain classes of objects such as unconstrained discriminant array components of
records may be allocated outside a given collection, so a collection may accommodate more objects than
might be expected.

The specification of storage for a task activation (t Istoaqe._size) is evaluated at run-time when
a task to which the length clause applies is activated, and is therefore subject to rejection (via storage_0e-
ror) based on available storage at the time the allocation is made. Storage reserved for a task activation is
separate from storage needed for any collections defined within a task body.

The specification of small for a fixed point type (t ' small) is subject only to restrictions defined in the LRM
section 13.2.

F.5.2 Enumeration Representation Clauses
The internal code for the literal of an enumeration type named in an enumeration representation clause must
be in the range of standard. Integer.
The value of an internal code may be obtained by applying an appropriate instantiation of un-
checked conversion to an integer type.

F.5.3 Record Representation Clauses
The storage unit offset (the at srjac_simple _exression part) is given in terms of 8-bit storage units and must
be even.
A bit position (the range part) applied to a discrete type component may be in the range 0.. 15, with 0 being
the least significant bit of a component. A range specification may not specify a size smaller than can accom-
modate the component. A range specification for a component not accommodating bit packing may have
a higher upper bound as appropriate (e.g. 0. .31 for a discriminant string component). Refer to the inter-
nal data representation of a given component in determining the component size and assigning offsets.

Components of discrete types for which bit positions are specified may not straddle 16-bit word boundaries.

The value of an alignment clause (the optional at mod pan) must evaluate to 1.2.4. or 8, and may not be
smaller than the highest alignment required by any component of the record.

F.5.4 Address Clauses
An address clause may be supplied for an object (whether constant or variable) or a task entry, but not for a
subprogram, package, or task unit. The meaning of an address clause supplied for a task entry is given in sec-
tion F.S.5.

Meridian Ada Compiler User's Guide 156

Appendix F

An address expression for an object is a 32-bit memory address of type system. addcxeaa.
SF.5.5 Interrupts

A task eny's address clause can be used to associate the entry with a UNIX signal. Values in the range 0. .31
are meaningful, and represent the signals corresponding to those values.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation

=Ther ae no restrictions for changes of representation effected by means of type conversion.

F.6 Implementation-Dependent Components

No names are generated by the implementation to denote implemenauion-dependent components.

F.7 Unchecked Conversions

There are no restrictions on the use of unchecked.conver:on. Conversions between objects whose
sizes do not conform may result in storage areas with undefined values.

F.8 Input-Output Packages

A summary of the implementation-dependent input-output characteristics is:

" In calls to open and create, the form parameter must be the empty string (the de-
fault value).

" Moe than one internal file can be assomated with a single external file for reading
only. For writing, only one internal file may be associated with an external file; Do
not use reset to get around this rule.

" Temporary sequential and direct files ae given names. Temporary files are deleted
when they are cloed

" File I/O is buffered; text files associated with terminal devices are line-buffered.

SThe packages sequentialio and direct i£ cannot be instantiated with un-

constrained composite types or record types wit discrnminants without defaults.

F] F.9 Source Line and Identifier Lengths

Source lines and identifiers in Ada source programs are presently limited to 200 characters in length.

157 Meridian Ada Compiler User's Guide-_ .

